Interactions among N_2 , N_2O , and C_2H_2 as Substrates and Inhibitors of Nitrogenase from Azotobacter vinelandii[†]

Jihong Liang and Robert H. Burris*

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706

Received February 3, 1988; Revised Manuscript Received June 1, 1988

ABSTRACT: An isotope-ratio mass spectrometer and ^{15}N -enriched N_2O have been used to study the interactions of N_2O with other substrates of nitrogenase under such conditions that the concentrations of MgATP and sodium dithionite and the ratio of dinitrogenase reductase to dinitrogenase were high enough to favor substrate reduction over H_2 evolution. The results have shown that N_2 is competitive with N_2O and N_2O is competitive with N_2O and N_2O is competitive with N_2O and N_2O and N_2O is competitive with N_2O . The K_{is} 's for N_2 , N_2O , and C_2H_2 are 0.37, 0.50, and 0.014 atm, respectively. The K_{ii} for C_2H_2 is 0.016 atm. N_2O at a pressure of 40 atm completely inhibited H_2 formation. Whereas N_2O is a noncompetitive inhibitor of HD formation, D_2 did not exert any effect on N_2O reduction. At constant pN_2 , an increase in pN_2O decreased both NH_3 and H_2 production. At fixed pN_2O , an increase in pN_2 restored NH_3 production, but changes in H_2 evolution and NH_3 production were different; at low pN_2O (0, 0.1, 0.2 atm), H_2 evolution declined with rising pN_2 ; however, at high pN_2O (1.0, 2.0 atm), the rate of H_2 evolution was corestored with the rate of NH_3 production by increasing pN_2 . A mechanism has been suggested to explain the experimental observations.

l itrogenase is composed of two electron transferring proteins, dinitrogenase (MoFe protein) and dinitrogenase reductase (Fe protein) (Hageman & Burris, 1980). Under physiological conditions the dinitrogenase reductase is reduced by ferredoxin or flavodoxin (Mortenson, 1963, 1964; Shethna, 1966). Dithionite is often used as the reductant for this protein in in vitro systems. Reduced dinitrogenase reductase transfers a single electron at a time to dinitrogenase with the concomitant hydrolysis of two molecules of MgATP to produce two molecules of MgADP plus inorganic phosphate (Tso & Burris, 1973). Dinitrogenase, with its multiple iron-sulfur centers and its FeMoco prosthetic groups, serves as a electron sink capable of reducing all of the substrates of nitrogenase. In addition to reducing its physiological substrate N₂ to NH₃, nitrogenase is also capable of reducing a variety of low molecular weight compounds such as nitrous oxide, acetylene, azide, cyanide, methyl isocyanide, cyclopropene, protons, and analogues of some of these compounds (Hardy, 1979; Postgate, 1982). All substrates compete for electrons from the reduced dinitrogenase; therefore, they are mutually inhibitory (Burris, 1979). N₂ is a competitive inhibitor of C₂H₂ reduction, whereas C_2H_2 is a noncompetitive inhibitor of N_2 fixation (Rivera-Ortiz & Burris, 1975). This may be the only known example in enzymology that two substrates have a nonreciprocal inhibitory pattern.

Reduction of N_2O was the first reported example of reduction of a substrate other than N_2 by nitrogenase; cultures of Azotobacter vinelandii and soybean nodules assimilated ¹⁵N from an atmosphere containing ¹⁵N₂O (Mozen & Burris, 1954). N₂O reduction to N₂ plus H₂O involves the transfer of two reducing equivalents and two protons, and N₂ in turn is further reduced to NH₃ (Hoch et al., 1960; Hardy & Knight, 1966; Jensen & Burris, 1986). N₂O is one of the only two demonstrated competitive inhibitors of N₂ reduction (H₂ being the other) (Repaski & Wilson, 1952; Rivera-Ortiz &

Burris, 1975; Jensen & Burris, 1986). In contrast to N_2 , which is a competitive inhibitor of C_2H_2 reduction and is unable to suppress nitrogenase-mediated H_2 evolution even at infinitely high pN_2 (Rivera-Ortiz & Burris, 1975; Simpson & Burris, 1984), N_2O has been reported to be a noncompetitive inhibitor of C_2H_2 reduction (Rivera-Ortiz & Burris, 1975) and is predicted by extrapolation of the experimental data to wipe out H_2 evolution at infinite pN_2O (Jensen & Burris, 1986). Also in contrast to N_2 reduction which is inhibited by H_2 (Wilson & Umbreit, 1937; Guth & Burris, 1983), N_2O reduction has been reported to be insensitive to H_2 inhibition (Hoch et al., 1960; Jensen & Burris, 1986).

The stoichiometry of one H_2 evolved per N_2 fixed under 50 atm of N_2 and saturating electron flux indicates that H_2 evolution is an inherent property of the N_2 fixation reaction of nitrogenase (Simpson & Burris, 1984). Several investigators have suggested mechanisms to explain this phenomenon (Chatt, 1980; Guth & Burris, 1983; Lowe & Thorneley, 1984a,b). It has been proposed that N_2 binds to a specific redox form of the enzyme that contains metal-bound hydrides and displaces two hydrides to form H_2 . Under a high p N_2 and saturating electron flux, it is suggested that electrons that otherwise would reduce protons (so-called electron leakage) would be redirected to reduce N_2 and would produce one H_2 per N_2 fixed. Direct experimental proof of this proposal still is lacking.

In the present paper we have used $^{15}N_2O$ to study the effect of N_2 on N_2O reduction and the interactions between N_2O and C_2H_2 . We also have placed nitrogenase under high pN_2O , up to 40 atm, to ascertain the effect of pN_2O on H_2 evolution. We describe the utilization of N_2O as a probe to investigate the proposed mechanism for H_2 production via H_2 displacement by N_2 .

MATERIALS AND METHODS

Growth of Bacteria and Purification of Nitrogenase. A. vinelandii OP was grown at 30 °C in a 300-L fermenter on the nitrogen-free medium described by Strandberg and Wilson (1968). The nitrogenase proteins were prepared from frozen cell paste in two batches by the method of Hageman and

[†]This work was supported by the College of Agricultural and Life Sciences, University of Wisconsin—Madison, and by U.S. Department of Energy Grant DE-FG02-87ER13707. DOE support does not constitute an endorsement by DOE of the views expressed in this article.

Burris (1980) to specific activities of 1256–1898 and 897–1826 nmol of ethylene produced (minute-mg of protein) for dinitrogenase and dinitrogenase reductase, respectively. The proteins were homogeneous as indicated by denaturing polyacrylamide gel electrophoresis.

Preparation of $^{15}N_2O$. Isotopically labeled nitrous oxide was prepared by the decomposition of ¹⁵NH₄NO₃ [prepared from 73 atom % 15N (15NH₄)₂SO₄ and HNO₃; Burris & Wilson, 1957]. The ¹⁵NH₄NO₃ was heat decomposed into N₂O and water by a modified procedure of Friedman and Bigeleisen (1950). To prevent sublimation of NH₄NO₃ to cooler portions of the reaction tube, the decomposition was carried out under 1 atm of helium rather than under high vacuum. A roundbottom flask containing anhydrous ¹⁵NH₄NO₃ was placed vertically in an electrically heated tube and heated to 220-240 °C. The N₂O formed was collected in a glass vessel over mercury. At the conclusion of the reaction (overnight), the N₂O was passed through an alcohol-dry ice trap to remove higher nitrogen oxides and then was condensed in a U-shaped tube immersed in a slurry of solid ethanol in liquid ethanol (-117.3 °C). Possible contaminant N_2 , O_2 , and NO were removed by evacuation. N₂O was collected by warming the U-tube. This purification procedure was repeated three times. The preparation contained the molecular species of N₂O $(^{15}N^{14}NO,^{14}N^{15}NO,^{15}N^{15}NO,^{14}N^{14}NO)$ with 35.7 atom % ^{15}N determined by mass spectrometric analysis. Elsewhere in this paper the terms ¹⁵N₂O and ¹⁵N₂ are used in the generic sense to indicate 15N-labeled N2O and N2 rather than to indicate the specific molecular species ¹⁵N¹⁵NO and ¹⁵N¹⁵N.

Nitrogenase Assays. Unless otherwise stated, reactions were carried out at 30 °C with shaking. The reaction mixture contained the following in 1 mL: 5.91 μ mol of ATP (Sigma Chemical Co.), 11.07 μ mol of magnesium acetate (Matheson Coleman and Bell), 27.9 μ mol of creatine phosphate (United States Biochemical Co.), 0.1 mg of creatine phosphokinase (EC 2.7.3.2; Sigma Chemical Co.), 20 μ mol of Na₂S₂O₄ (Sigma Chemical Co.), 20 μ mol of tris(hydroxymethyl)-aminomethane (Tris; Boehringer Mannheim Biochemicals), 50 μ mol of N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (Hepes; Research Organics Inc.) adjusted to pH 7.5, and nitrogenase proteins as indicated.

High-Pressure Experiments. The high-pressure experiments were conducted in the way described previously by Simpson and Burris (1984). Assay mixtures contained the following in 1 mL: 27.87 µmol of creatine phosphate, 0.1 mg of creatine phosphokinase, 14.9 µmol of Na₂S₂O₄, 15.4 µmol of magnesium acetate, 5.92 μ mol of ATP, 20 μ mol of Tris, 50 μ mol of Hepes, adjusted to pH 7.5, and nitrogenase proteins as indicated. The reaction vessel was a 22.2-mL stainless steel chamber. Two 1-mL beakers, which tilted in opposite directions, were glued with a minimal amount of epoxy cement to the inner wall of the vessel above the enzyme solution level. In a N₂-filled anaerobic glovebox, 0.2 mL of MgATP, 0.2 mL of 12.2 M TCA, and 7.8 mL of enzyme solution were transferred into the two 1-mL beakers and the stainless steel cup, respectively; a gold gasket was placed on the top of the cup, the cap was screwed on tightly, and the reaction vessel was removed from the glovebox. The reaction bomb was filled with 1.5 atm of N₂O (measured with a mercury manometer) and then with 50 atm of N₂ (measured with a 55-atm Parr pressure gauge) in some experiments, or just with 40 atm of N₂O in other experiments. To make sure that the flow of gases always was into and never out of the reaction bomb when we were filling with gases to high pressure, we carefully controlled the valves so that the pressure in the inlet tubing outside the bomb always was higher than the pressure inside the bomb. The enzyme solution was stirred with a glass-coated magnetic stirring bar for 5 min to allow equilibration of the gases with the liquid phase. The reaction was initiated by tipping MgATP into the enzyme solution. Reactions were conducted at room temperature (about 22 °C) for 10 min with stirring adequate to give maximal rates, and reactions were terminated by tipping TCA into the vessels. The gas in the bomb was released slowly and was collected in a glass reservoir by displacement of mercury. With the reservoir still connected to the reaction bomb, the reaction solution was stirred for several minutes at atmospheric pressure to allow equilibration of dissolved gases between liquid and gas phases. Then the volume of displaced mercury was measured to permit calculation of the total amount of H₂ produced and the final pressure in the reaction vessel. Atmospheric pressure was measured at the time of collection of the product gases. The TCA-acidified reaction mixture was stored frozen at -20 °C.

 C_2H_2 Reduction. The C_2H_2 reduction assays were performed in 5-mL bottles fitted with vaccine stoppers and filled with 1 atm of argon and 0.2 mL of enzyme mixture. Different amounts of substrate (C_2H_2 , generated by addition of CaC_2 to H_2O) and inhibitor (N_2O , USP, purchased from Badger Welding Supplies, Madison, WI, and purified by condensing in a slurry of solid acetone in liquid acetone, -95 °C) were added to the reaction bottles with gas-tight syringes. Assays were initiated by addition of MgATP and were terminated by addition of 50 μ L of 25% trichloroacetic acid. Gas samples (0.5 mL) were removed with 1.0-mL plastic syringes, and ethylene was measured on a Carle 9500 gas chromatographic unit equipped with a flame ionization detector and a column of Porapak R operated at 75 °C with N_2 as the carrier gas.

N₂O Reduction. Assays for N₂O reduction were conducted in the same manner as for C₂H₂ reduction except that helium was used in place of argon. N₂O (with or without ¹⁵N enrichment) was the substrate, and N₂, C₂H₂, or D₂ was the inhibitor. ¹⁵N₂ production from ¹⁵N₂O was analyzed on an MAT 250 isotope-ratio mass spectrometer. To optimize the sample size for analysis, a measured amount of tank N₂ as indicated was added to each reaction bottle on termination of the reaction. Because ¹⁵N₂O ionizes in the mass spectrometer to produce major peaks at masses 28, 29, 30, 44, and 45, measurement of ¹⁵N₂ production from ¹⁵N₂O is impractical unless N_2 (including $^{15}N_2$) is separated from bulk $^{15}N_2$ O. We accomplished this by freezing the N₂O by immersing the reaction bottle in liquid nitrogen for 2 min. The reaction bottle was connected to the sample inlet port of the mass spectrometer with the device illustrated and described in Figure 1. The mass 29 and mass 28 signals were compared, and their ratio was indicated on the printout from the mass spectrometer. An air standard was analyzed in parallel with each sample on the standard side inlet of the mass spectrometer. The production of ¹⁵N₂ was expressed as the excess of the ratio of mass 29/28 above the ratio of the standard (air): v = 29/28(sample) -29/28(air standard).

Purification of N_2O and C_2H_2 . N_2O was transferred from a 100-ft³ tank to a lecture bottle where it was condensed by immersing the lecture bottle in a liquid-solid acetone bath (-95 °C). Any contaminating N_2 , O_2 , and NO were removed by evacuation of gases above the condensed N_2O . Upon warming, N_2O in the lecture bottle had a pressure of 600 psi. C_2H_2 was generated with CaC_2 and distilled water. To minimize O_2 contamination in the C_2H_2 , we added a small amount of dithionite to the water and used an excess of CaC_2 so excess C_2H_2 purged the water in the displacement reservoir.

6728 BIOCHEMISTRY LIANG AND BURRIS

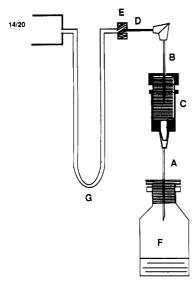


FIGURE 1: Device for introducing gas into a mass spectrometer through a 14/20 standard taper joint. Needle A penetrates the vaccine stopper of the reaction vessel before the vessel is immersed in liquid nitrogen (after immersion the stopper is too hard to permit penetration). Needle B, part of a double-needle unit, enters about halfway into silicone rubber plug C (1-1.5 cm long). Needle D of the double needle penetrates septum E and is pumped out with the evacuation system of the mass spectrometer. A gas sample from reaction bottle F now can be introduced to the mass spectrometer by pushing needle B all the way through silicone rubber plug C. The gas passes through metal U-tube G immersed in liquid N₂. Double needles can be produced by cutting the plastic hubs of two needles at a 45° angle and joining these hubs after heating them over a candle. Deep septa can be cut from silicone rubber stoppers.

 H_2 Production. For experiments in which a relatively high production of H_2 was anticipated, H_2 was determined in a 0.5-mL gas sample by gas chromatography with a thermal conductivity detector and a column of molecular sieve 5A. Argon was used as carrier gas, and the column temperature was 50 °C. The instrument was calibrated with known amounts of H_2 in argon. In experiments (such as high-pressure experiments) in which low levels of H_2 were expected, H_2 was analyzed in 0.5-mL gas samples with the MAT 250 isotoperatio mass spectrometer. Standard curves for H_2 were prepared by analyzing standards of H_2 in N_2 , H_2 in N_2 O, or H_2 in N_2 plus N_2 O.

Ammonia Production. The reaction mixture was centrifuged, and a sample of the supernatant was transferred to a clean 9-mL bottle to which 1 mL of 4.5 M K₂CO₃ was added to initiate the microdiffusion of NH₃ to a glass rod previously dipped in 1 M H₂SO₄ (Burris, 1972). After 4-h microdiffusion, NH₃ was assayed by the indophenol method of Chaykin (1969). A₆₂₅ was measured after incubation with the indophenol reagent at room temperature for 1 h. NH₄Cl was used as the standard.

Treatment of Kinetic Data. Kinetic data were analyzed by the computer program described by Cleland (1963, 1967). The initial inhibition patterns, which were helpful for choosing the appropriate rate equations for computer analysis, were obtained from double-reciprocal plots (1/velocity vs 1/substrate concentration). Data showing competitive and noncompetitive inhibition were fitted to the equations $v = VA/[K(1 + I/K_i) + A]$ and $v = VA[K(1 + I/K_{is}) + A(1 + I/K_{ii})]$, respectively, where A = substrate concentration, I = inhibitor concentration, v = velocity, v = maximum velocity, and v = the inhibition constant. Experimental data points (usually the average of two or three observations) were recorded and the plotted lines were calculated by the computer program that gave greatest weight to the highest velocities and least weight to the lowest

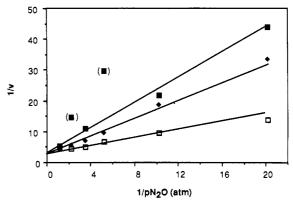


FIGURE 2: Inhibition of N_2O reduction by N_2 . The reaction mixture contained the following in 1 mL: 0.138 mg of dinitrogenase, 0.474 mg of dinitrogenase reductase, 5.91 μ mol of ATP, 11.07 μ mol of magnesium acetate, 27.9 μ mol of creatine phosphate, 0.1 mg of creatine phosphokinase, 20 μ mol of $Na_2S_2O_4$, 20 μ mol of Tris, and 50 μ mol of Hepes (pH 7.5, adjusted with HCl). Reactions were conducted in 5-mL bottles containing 0.2 mL of enzyme mixture, 1 atm of He, varying $p^{15}N_2O$ (35 atom % ^{15}N) as indicated, and pN_2 at 0 atm (\square), 0.4 atm (\blacksquare), and 0.8 atm (\blacksquare) at 30 °C for 30 min. Reaction was initiated by addition of MgATP and stopped with 50 μ L of 25% TCA. v = the ratio of mass 29/28 of the samples minus the ratio of 29/28 of the air standard [v = 29/28(sample) - 29/28(air)].

velocities. Data points in parentheses were not included in the computer treatment.

RESULTS

Effect of N_2 on N_2O Reduction. N_2 is not only an inhibitor of but also one of the products of N₂O reduction, so this poses difficulties in studying the effect of N₂ on N₂O reduction. To distinguish product N_2 from inhibitor N_2 , we utilized $^{15}N_2O$ as the substrate, so that we were able to measure the 15N2 production with an isotope-ratio mass spectrometer. Under our conditions of measurement, 15N2O breaks down in the electron beam of the mass spectrometer to produce ¹⁵N₂. As this ¹⁵N₂ would obscure the measurement of enzymatically produced ${}^{15}N_2$, we immersed the reaction bottles in liquid N_2 before introducing gas samples from them into the mass spectrometer; this effectively removed ¹⁵N₂O so that it did not enter the mass spectrometer. A series of bottles was filled with varying amounts of ¹⁵N₂O (from 0 to 0.5 atm) and 0.8 atm of N₂, and these gas mixtures were analyzed for mass 29 and mass 28 peaks. The results (not shown) indicated that N2O was effectively removed by the liquid N2, as there was no measurable difference between the ratio of mass 29 to mass 28 of samples and standards (air) throughout the concentration range of ¹⁵N₂O used. A time course of ¹⁵N₂O reduction by purified nitrogenase from A. vinelandii was run as described under Materials and Methods. The rate of ¹⁵N₂ production was linear up to 35 min after initiation of the reaction (data not shown). As the analytical methods were reliable, we were able to investigate the effect of N₂ on N₂O reduction by including varying amounts of ¹⁵N₂O and fixed levels of N₂ in the reaction bottles and examining the ratio of mass 29 to mass 28 of the product gas. Figure 2 records a double-reciprocal plot of one of the experiments. Another experiment gave similar results (data not shown). Computer analysis of the data indicated that N₂ is a competitive inhibitor of N₂O reduction with a K_{is} of 0.37 atm (N_2) . The K_m for N_2O was estimated to be 0.23 atm, which is comparable to 0.24 atm for nitrogenase from Klebsiella pneumoniae, reported by Jensen and Burris (1986).

Interactions between N_2O and C_2H_2 . Figure 3 records a double-reciprocal plot showing that C_2H_2 noncompetitively inhibited N_2O reduction. The kinetic constants obtained by

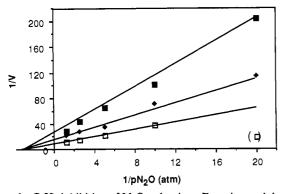


FIGURE 3: C_2H_2 inhibition of N_2O reduction. Experimental details were as described in the legend to Figure 2 and under Materials and Methods except that the reaction was run for 20 min and the reaction mixture contained the following in 1 mL: 0.495 mg of dinitrogenase reductase and 0.103 mg of dinitrogenase. (\square) $C_2H_2 = 0$ atm; (\spadesuit) $C_2H_2 = 0.01$ atm; (\blacksquare) $C_2H_2 = 0.03$ atm. v = 29/28(sample) - 29/28(air).

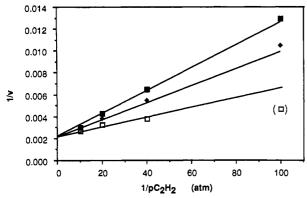


FIGURE 4: N_2O inhibition of C_2H_2 reduction. Experimental details were as described in the legend to Figure 2 and under Materials and Methods except that the reaction time was 15 min. (\square) $N_2O = 0$ atm; (\spadesuit) $N_2O = 0.3$ atm; (\blacksquare) $N_2O = 0.6$ atm. $v = \text{nmol of } C_2H_4/15$ min

computer calculation are $K_{is} = 0.014$ atm and $K_{ii} = 0.016$ atm. The N₂O inhibition of C₂H₂ reduction has been reported by Rivera-Ortiz and Burris (1975) to be noncompetitive. Knowing that N₂ and N₂O are mutually competitive inhibitors, that C₂H₂ inhibits both N₂ and N₂O reductions noncompetitively, and that N₂ is a competitive inhibitor of C₂H₂ reduction, we reasoned that N₂O could be a competitive inhibitor of C₂H₂ reduction, contrary to our earlier conclusion. Before reexamining this topic, we purified commercially obtained N₂O gas as described under Materials and Methods. We wanted to be sure that the N₂ was free of NO, a very potent inhibitor of nitrogenase. Results shown in Figure 4 indicate that N₂O is a competitive inhibitor of C_2H_2 reduction; the K_{is} is 0.50 atm. The K_m for C_2H_2 was estimated to be 0.022 atm, which is close to the estimation (0.015 atm) reported by other workers (Hwang et al., 1973).

Interactions between N_2O and H_2 . Nitrogen-mediated HD formation occurs only in the presence of N_2 (Li & Burris, 1983). The competition between HD formation and N_2 reduction for electrons from the same electron pool has been suggested as the mechanistic basis for competitive H_2 inhibition of N_2 reduction (Guth & Burris, 1983). N_2O does not support, but noncompetitively inhibits, HD formation by nitrogenase, whereas H_2 alone does not exert any effect on N_2O reduction (Jensen & Burris, 1986). We tested the effect of D_2 on N_2O reduction in the presence of 0.1 atm of N_2 (higher pN_2 would inhibit HD formation; Li & Burris, 1983). The results are not shown, but at pD_2 levels of 0.1, 0.2, and 0.4 atm there was

Table I: Inhibition of H ₂ Evolution by N ₂ O ^a				
pN ₂ O (atm)	nmol of H ₂ / (bottle-15 min)	nmol of NH ₃ / (bottle-15 min)	total electron pairs/(mg of dinitrogenase min)	%
0 _p	630.8	1044.0	2202.4	100.0
1	235.3	3.3	240.3	10.9
2	93.4	ND^c	93.4	4.2
3	25.3	ND	25.3	1.1
4	58.9	ND	58.9	2.7
40	NID	NID	^	^

^aThe reaction mixture contained the following in 1 mL: 0.127 mg of dinitrogenase, 0.703 mg of dinitrogenase reductase, 6.15 μmol of ATP, 15.95 μmol of magnesium acetate, 28.9 μmol of creatine phosphate, 0.1 mg of creatine phosphokinase, 20.76 μmol of Na₂S₂O₄, 20 μmol of Tris, and 50 μmol of Hepes (pH 7.5, adjusted with HCl). Reactions under 0-4 atm of N₂O were run in 9-mL bottles containing 0.5 mL of enzyme mixture. Reactions were initiated by addition of MgATP, run for 15 min at 30 °C, and terminated with 13 μL of 12.2 M TCA. Reaction under 40 atm of N₂O was serformed in a stainless steel bomb as described. Total activity was the sum of electrons allocated to H₂ and NH₃. ^b1 atm of N₂. ^cND, not detectable.

no change in the profiles of the N_2O titration curve, as measured by the ratio of mass 29 to mass 28. HD formation was not analyzed in the experiment, as the sample size was limited.

Although H₂ did not affect N₂O reduction, N₂O strongly inhibited H₂ evolution by nitrogenase. Table I records the experiments in which H₂ evolution was quantitated at high pN₂O, up to 40 atm. The total specific activity was determined to be 2105 nmol of electron pairs/(mg of dinitrogenase protein·min) in a control experiment run under the same conditions as for the other samples, except that 1 atm of N₂ was used in place of N₂O. This activity is the sum of the number of electron pairs allocated to H₂ and NH₃; we assume 1 pair of electrons directed to H₂ and 1.5 pairs to NH₃. This activity was taken to be 100% and assumes that N₂O does not alter the specific activity of the enzyme (Jensen & Burris, 1986; Guth & Burris, 1983). One atmosphere of N₂O reduced H₂ evolution to 11.4% of the control, and 3 atm of N₂O almost abolished H₂ production by nitrogenase. The enzyme also was placed under 40-atm pN2O that had been purified as described under Materials and Methods and was passed slowly over 50 °C BASF (Badishce Anilin-und-Soda-Fabrik) R3-11 catalyst (Chemical Dynamics Corp.) to reduce the concentration of contaminating O₂. Under such conditions, neither H₂ nor NH₃ was detectable by the isotope-ratio mass spectrometer (sensitivity for H₂ being 1 nmol of H₂/mL) or colorimetrically (Chaykin, 1969). Two controls of the high-pressure experiment that were run under either 1 atm of N₂O or 1 atm of Ar gave 231 and 2303 nmol of $H_2/(mg \text{ of dinitrogenase})$ protein min), respectively, and no NH3 formation was detected.

Can N_2 Restore H_2 Evolution after N_2O Inhibition? Both N_2 and N_2O inhibit H_2 evolution, but to different extents. We performed an experiment to examine how the pN₂ or pN₂O affects partitioning of electrons to protons (H₂ evolution) when one of these two gases is kept constant and the other is varied. With a constant pN₂ at 0.25, 0.5, 1.0, and 2.0 atm, an increase in pN₂O from 0 to 2 atm always led to a decrease in H₂ evolution, in NH₃ production, and therefore in the total electron flux directed to H₂ plus NH₃ (Figure 5). If the pN₂O remained constant and the pN2 was changed, however, the curves exhibited different trends in H₂ evolution compared to NH_3 production. With increasing pN_2 from 0.25 to 2.0 atm, NH_3 production increased regardless of the p N_2O , whereas H_2 production decreased at low pN₂O (0, 0.1, 0.2 atm), and increased at high p N_2O (1.0, 2.0 atm) (Figure 6). Data from assays under 2-atm pN₂O were replotted in Figure 7, and this clearly indicates that an increase in the pN₂ restored both NH₃

6730 BIOCHEMISTRY LIANG AND BURRIS

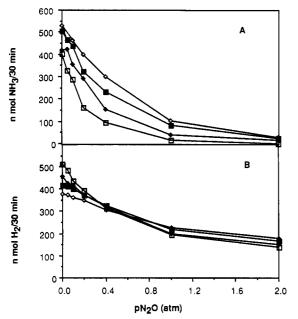


FIGURE 5: Effect of pN₂O on H₂ and NH₃ production. Reactions were performed in 5-mL bottles as described in the legend to Figure 2 and under Materials and Methods except that dinitrogenase and dinitrogenase reductase were 0.177 and 0.916 mg/mL, respectively. H₂ was analyzed on a gas chromatography unit equipped with a thermal conductivity detector, and NH₃ was measured as described. (A) Effect of pN₂O on NH₃ production; (B) effect of pN₂O on H₂ evolution. (\square) N₂ = 0.25 atm; (\spadesuit) N₂ = 0.5 atm; (\blacksquare) N₂ = 1.0 atm; (\diamondsuit) N₂ = 2.0 atm.

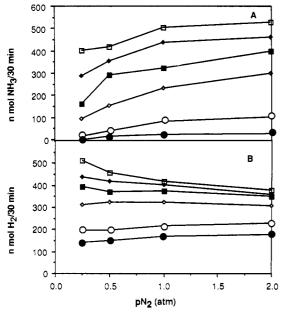


FIGURE 6: Effect of pN₂ on H₂ and NH₃ production. Data were taken from Figure 5. NH₃ production (A) and H₂ evolution (B) were plotted vs pN₂ at pN₂O's of 0 (\square), 0.1 (\spadesuit), 0.2 (\blacksquare), 0.4 (\diamondsuit), 1.0 (\bigcirc), and 2.0 atm (\spadesuit).

and H_2 production. This observation was confirmed by an independent study performed with a high-pressure bomb, as described under Materials and Methods, and the results are shown in Figure 8. Under 1-atm pN_2 , the total activity (sum of electrons directed to H_2 and NH_3) was 996 electron pairs/(mg of dinitrogenase protein·min); 27.5% went to H_2 and 72.5% went to NH_3 . Under 1 atm of N_2 plus 1.5 atm of N_2O , NH_3 production was almost abolished, and the remaining H_2 evolution accounted for about 5% of the total enzyme activity. When the pN_2O was kept constant at 1.5 atm and the pN_2 raised to 50 atm, the activity accounted for by H_2 and

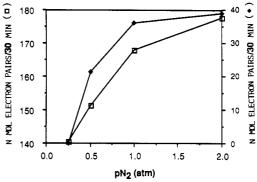


FIGURE 7: Dependence on pN_2 of H_2 and NH_3 production at a pN_2O of 2 atm. Data were taken from Figure 6 and replotted as nmol of electron pairs/30 min vs pN_2 . (\spadesuit) NH_3 ; (\square) H_2 .

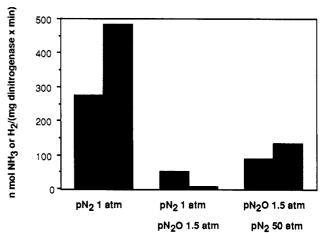


FIGURE 8: Restoration by N_2 of NH_3 and H_2 production from N_2O inhibition. Reaction mixtures were described under Materials and Methods for the high-pressure experiment and in addition contained the following in 1 mL: 0.685 mg of dinitrogenase reductase and 0.128 mg of dinitrogenase. Reactions under 3 atm of total gas pressure were conducted in 9-mL bottles containing 0.5 mL of reaction mixture, 1 atm of N_2 , and N_2O as indicated. Reactions, initiated by addition of 13 μ L of MgATP and terminated by 13 μ L of 12.2 M TCA, were run for 10 min with rapid shaking at room temperature (22 °C). The high-pressure experiment was performed in a stainless steel bomb as described under Materials and Methods. H_2 (left bars) and NH_3 (right bars) from all experiments were analyzed with an isotope-ratio mass spectrometer and an indophenol colorimetric method, respectively, as described.

 NH_3 production was about 29% of the total enzymatic activity, and H_2 evolution was corestored with NH_3 production. The ratio of H_2 evolved to N_2 fixed was 1.30/1.

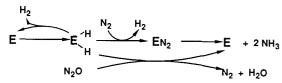
DISCUSSION

Since the first report of N₂O as an alternative substrate for nitrogenase (Mozen & Burris, 1954), considerable information has accumulated on N2O both as a substrate and as an inhibitor of nitrogenase. N₂O is reduced to H₂O and N₂, and the N₂ in turn is reduced further to NH₃. N₂O reduction, which involves two protons and two reducing equivalents, is competitive with N₂ reduction. Because of the difficulty in distinguishing added N_2 from N_2 produced from N_2O , the effect of N_2 on N_2O has not been determined previously. The fact that N₂ is a competitive inhibitor of C₂H₂, whereas C₂H₂ is a noncompetitive inhibitor of N₂, prompted us to test experimentally whether N₂O and N₂ have a comparable type of interaction. By using ¹⁵N-labeled N₂O as substrate and an isotope-ratio mass spectrometer as the analytical device, we have demonstrated that N2 inhibits N2O reduction competitively. We also tried to fit the data to a noncompetitive inhibition program, and a result of 0.387 ± 0.076 was obtained

for K_{is} . This result had a greater standard error than that obtained by fitting to a competitive pattern (0.367 \pm 0.038). Furthermore, with noncompetitive fitting, the K_{ii} was calculated by computer to be 19.06 ± 61.88 ; thus the standard error was three times greater than the constant itself. Although an isotope-fractionation factor of 1.039 has been reported for N₂O reduction in intact A. vinelandii cells (Yamazaki et al., 1987), the proportion of ¹⁵N₂ in the total product N₂ would not be changed significantly by such fractionation. Measurement of ¹⁵N enrichment in the product should faithfully indicate the N_2 production from N_2O . Thus, we are confident that N_2 is competitive vs N_2O . Our estimated value of 0.23 atm of N_2O for the K_m for nitrogenase from A. vinelandii is in good agreement with the value of 0.24 atm of N_2O for the K_m of nitrogenase from K. pneumoniae (Jensen & Burris, 1986). Our observed K_i of N_2 against N_2 O was 0.11 atm; this appears to be the first report of this K_i . Comparing the K_m (N₂O) with the K_i for N_2O against N_2 fixation [reported to be 0.11 atm by Rivera-Ortiz and Burris (1975) and Jensen and Burris (1986)] shows that the K_i is about half the K_m . In contrast, the K_i of N_2 against N_2O is over three times the K_m of N_2 (0.11 atm). So N₂O is a stronger inhibitor of N₂ fixation than is N₂ of N₂O reduction.

C₂H₂ reduction has received much attention because of its practical use in assaying nitrogenase activity. We have shown that on one hand N₂O is a competitive inhibitor of C₂H₂ reduction, and on the other hand C₂H₂ is a noncompetitive inhibitor of N₂O reduction. A comparable response holds true for N₂ vs C₂H₂ (Rivera-Ortiz & Burris, 1975). Rivera-Ortiz and Burris (1975) reported that N₂O was a noncompetitive inhibitor of C₂H₂ reduction. The source of the discrepancy with our earlier results is not clear. Perhaps there was an impurity in the N₂O used in the earlier experiments (NO is a very strong inhibitor of nitrogenase). In our current experiments we carefully purified N₂O gas by condensing it at a temperature below its melting point and then removing possible contaminating gases by evacuation. The fact that the current work utilized highly purified nitrogenase components, whereas the experiments of Rivera-Ortiz and Burris (1975) were performed on crude preparations with approximately 5% the specific activity, may have introduced some differences. We also tried to fit the experimental data to a noncompetitive program; the calculated K_{is} and K_{ii} were 0.143 \pm 0.030 and -1.863 ± 0.423 atm, respectively. The K_{ii} was not defined for a reliable noncompetitive inhibition pattern.

The nonreciprocal response of N_2 or N_2O with C_2H_2 raises a puzzling problem. The competitive inhibition of C₂H₂ reduction by N₂ or N₂O suggests that these three substrates bind to the same form of the enzyme, whereas the noncompetitive inhibition of N₂ or N₂O reduction by C₂H₂ indicates that C₂H₂ can bind to an enzyme form that is distinct from the one to which N₂ or N₂O bind. Rivera-Ortiz and Burris (1975) proposed a model that involves the binding of C_2H_2 and N_2 at different sites and requires the enzyme to be at least six electrons reduced before it can start the reduction of N₂ to NH_3 . They suggested that C_2H_2 reduction taps the same electron sink as N₂ does but can occur when the enzyme is two electrons reduced. This model predicts that the electron transfer from dinitrogenase to N₂ is in one step only; hence, there would be no observable intermediates. However, Thorneley et al. (1978) reported that an enzyme-bound dinitrogen-hydride intermediate was released upon acid or alkali hydrolysis of nitrogenase fixing N_2 . This observation strongly suggests that N₂ is reduced step by step on the enzyme. It also was proposed that N2 can bind to forms of dinitrogenase


that are less than six electrons reduced (relative to the dithionite-reduced state) (Thorneley & Lowe, 1984). To explain the nonreciprocal relationship between N₂ or N₂O and C₂H₂, we suggest that C₂H₂ binds to two different redox forms of dinitrogenase, one of which also accommodates N_2 and N_2O . Infinitely high pC₂H₂ can completely eliminate the binding of N₂ or N₂O on the same enzyme form and therefore can restore C₂H₂ reduction to its maximal rate, but an infinitely high pN₂ or pN₂O cannot totally eliminate the other C₂H₂ binding form, and therefore the V_{max} for N_2 reduction cannot be achieved in the presence of C₂H₂. This model is supported by the observation made by Davis et al. (1979) that nitrogenase has two $K_{\rm m}$'s for C_2H_2 . This indicates that there are two forms of the enzyme that bind C₂H₂ with different affinities. We observed the same phenomenon when testing the NO effect on C₂H₂ reduction (unpublished data). Unfortunately, our data do not define the $K_{\rm m}$'s of the two different C_2H_2 binding

On the basis of the types of interactions among the substrates for nitrogenase, Hwang and Burris (1973) proposed that five sites or modified sites existed on nitrogenase. Shah et al. (1978) demonstrated that isolated iron-molybdenum cofactor from dinitrogenase of A. vinelandii reduced acetylene to ethylene with borohydride as an electron donor and suggested that FeMoco is an active site of nitrogenase and probably the site to which N₂ binds and where it subsequently is reduced. Several investigations have suggested that FeMoco is the only active site of nitrogenase; it was shown that C₂H₂ (Smith, 1983) and CH₃NC (Orme-Johnson, 1985) bind to the FeMoco center of the dinitrogenase. Hawkes et al. (1984) offered direct evidence that FeMoco is the site of N₂ binding and reduction. Some investigators have proposed that nitrogenase can exist in different redox forms and that different substrates are bound and reduced by these different enzyme forms (Chatt, 1980). As discussed earlier, N₂ and N₂O are mutually competitive and they have the same pattern of interaction with C₂H₂; therefore, we suggest that N₂ and N₂O bind to the same enzyme form, a conclusion at odds with the argument of Hwang et al. (1973) that N₂ and N₂O bind to different or modified sites on the enzyme. Evidence suggests that the determining factor for binding a certain substrate is the redox state of the enzyme. Upon passing two electrons to N₂O to produce N₂ and H₂O, the enzyme becomes less reduced; this form may be incapable of binding either N₂ or N₂O. Under such circumstances, an N₂ molecule just derived from N₂O would not be held at the active site. Because the dissociation of dinitrogenase reductase from dinitrogenase is the rate-limiting step of the nitrogenase reaction (Thorneley & Lowe, 1983), the N₂ molecule would have sufficient time to diffuse from the active site before dinitrogenase was reduced to a state such that it could bind N_2 . In the interpretation of the results it also must be recognized that N₂O is a stronger inhibitor of N₂ reduction than is N₂ an inhibitor of N₂O reduction. In the usual measurements of N₂O reduction, the concentration of N₂O is much higher than that of N₂; therefore, the further reduction of N₂ to NH₃ is strongly inhibited by the substrate N₂O (Jensen & Burris, 1986).

In the absence of any other substrate, nitrogenase reduces protons from the aqueous medium to molecular H_2 . All substrates inhibit H_2 evolution but to different extents. Although most of the substrates completely suppress H_2 evolution at high concentrations, it was predicted that the physiological substrate, N_2 , would not block H_2 evolution completely even at an infinitely high pN_2 (Rivera-Ortiz & Burris, 1975); this prediction was tested experimentally and verified by Simpson

6732 BIOCHEMISTRY LIANG AND BURRIS

Scheme I

and Burris (1984). Nitrogenase under 50 atm of N₂ allocated approximately 27% of its electrons to H₂ production and 73% to the reduction of N₂ to NH₃. N₂O appears to bind to the same enzyme form as does N2; however, a pN2O of 40 atm completely abolishes H₂ production. When we included both N_2 and N_2O in the reaction system and measured the H_2 and NH_3 production, we observed that, at fixed pN_2 , an increasing pN₂O decreased both NH₃ and H₂ formation. At fixed pN₂O, increasing the pN₂ increased the NH₃ production regardless of the pN₂O level. However, H₂ evolution declined with increasing pN₂ at lower pN₂O and increased with increasing pN₂ at higher pN₂O. The high-pressure experiment indicated that a high pN₂ increased both H₂ evolution and NH₃ production (see Figure 8). To explain the observed data, we propose (Scheme I) that H_2 is evolved from E_H^H via the back-reaction $(E_H^H \rightarrow E + H_2)$ or by the displacement reaction when N_2 binds to $E_H^H (E_H^H + N_2 \rightarrow E^{N_2} + H_2)$; N_2O also can bind to E_H^H and the two bound hydrides appear in H_2O ($E_H^H + N_2O \rightarrow N_2 +$ $H_2O + E$). In the absence of N_2 and N_2O , nitrogenase will produce only H_2 ; when N_2 or N_2O is present, H_2 evolution will be partially suppressed, because a portion of the total electron flux will be diverted to N2 or N2O reduction. When N2 or N₂O is present at infinitely high pressure, H₂ production by the back-reaction will be completely blocked. Therefore, there will be no H₂ produced under N₂O, but H₂ still will be produced via the displacement reaction under N₂, and the ratio of H₂ evolved to N₂ fixed will be 1:1. This model accommodates our experimental data: under a low pN₂O, H₂ evolution by the back-reaction was somewhat inhibited by N₂O, and an increase in the pN₂ caused further inhibition of this H₂-evolving pathway. Although some H₂ was produced concomitant with N_2 binding, the absolute gain of H_2 from this pathway was relatively small compared to the loss of H₂ caused by N_2 inhibition of the back-reaction, so N_2 induced a net decrease in H₂ evolution. Under a higher pN₂O, H₂ production via the back-reaction was strongly inhibited by N_2O . When the pN₂ was increased, the H₂ produced by the displacement reaction was noticeably higher than the additional inhibition that N_2 exerted on H_2 production via the back-reaction. Thus, a net increase in H₂ production was observed. The data do not rule out the possibility that N_2 merely releases the N_2O inhibition of H₂ evolution by enhancing the ability of the enzyme to produce H₂ from H⁺.

ACKNOWLEDGMENTS

We thank Dennis M. Kiick for his help in kinetic data treatment and Frank Simpson for helpful discussions.

REFERENCES

Burris, R. H. (1972) Methods Enzymol. 24b, 415-431.

Burris, R. H. (1979) in A Treatise on Dinitrogen Fixation, Sections I and II: Inorganic and Physical Chemistry and Biochemistry (Hardy, R. W. F., Bottomley, F., & Burns, R. C., Eds.) pp 569-604, Wiley, New York.

Burris, R. H., & Wilson, P. W. (1957) Methods Enzymol. 4, 355-366.

Chatt, J. (1980) in *Nitrogen Fixation* (Stewart, W. D. P., & Gallon, W. W., Eds.) pp 1-18, Academic, London.

Chaykin, S. (1969) Anal. Biochem. 31, 375-382.

Cleland, W. W. (1963) Nature (London) 198, 463-465.

Cleland, W. W. (1967) Adv. Enzymol. Relat. Areas Mol. Biol. 29, 1-32.

Davis, L. C., Henzl, M. T., Burris, R. H., & Orme-Johnson,W. H. (1979) *Biochemistry 18*, 4860-4869.

Friedmen, L., & Bigeleisen, J. (1950) J. Chem. Phys. 18, 1325-1331.

Guth, J., & Burris, R. H. (1983) Biochemistry 22, 5111-5122.
Hageman, R. V., & Burris, R. H. (1980) Biochim. Biophys. Acta 591, 63-75.

Hardy, R. W. F. (1979) in A Treatise on Dinitrogen Fixation, Sections I and II: Inorganic and Physical Chemistry and Biochemistry (Hardy, R. W. F., Bottomley, F., & Burns, R. C., Eds.) pp 515-568, Wiley, New York.

Hardy, R. W. F., & Knight, E., Jr. (1966) Biochem. Biophys. Res. Commun. 23, 409-414.

Hawkes, T. E., Mclean, P. A., & Smith, B. E. (1984) *Biochem. J.* 217, 317–321.

Hoch, G. E., Schneider, K. C., & Burris, R. H. (1960) Biochim. Biophys. Acta 37, 273-279.

Hwang, J. C., Chen, C. H., & Burris, R. H. (1973) *Biochim. Biophys. Acta* 292, 256-270.

Jensen, B. B., & Burris, R. H. (1986) Biochemistry 25, 1083-1088.

Li, J.-L., & Burris, R. H. (1983) Biochemistry 22, 4472-4480.
Lowe, D. J., & Thorneley, R. N. (1984a) Biochem. J. 224, 877-886.

Lowe, D. J., & Thorneley, R. N. (1984b) *Biochem. J. 224*, 895-901.

Mortenson, L. E. (1963) Biochim. Biophys. Acta 81, 473-478.
Mortenson, L. E. (1964) Proc. Natl. Acad. Sci. U.S.A. 52, 272-279.

Mozen, M. M., & Burris, R. H. (1954) Biochim. Biophys. Acta 14, 577-578.

Orme-Johnson, W. H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419-459.

Postgate, J. R. (1982) The Fundamentals of Nitrogen Fixation, Cambridge University Press, Cambridge.

Repaske, R., & Wilson, P. W. (1952) J. Am. Chem. Soc. 74, 3101-3103.

Rivera-Ortiz, J. M., & Burris, R. H. (1975) J. Bacteriol. 123, 537-545.

Shah, V. K., Chisnell, J. R., & Brill, W. J. (1978) Biochem. Biophys. Res. Commun. 81, 232-236.

Shethna, Y. I., Wilson, P. W., & Beinert, H. (1966) *Biochim. Biophys. Acta 113*, 223-234.

Simpson, F. B., & Burris, R. H. (1984) Science (Washington, D.C.) 224, 1095-1097.

Smith, B. E. (1983) in Nitrogen Fixation: The Chemical-Biochemical-Genetic Interface (Muller, A., & Newton, W. E., Eds.) pp 23-62, Plenum, New York.

Strandberg, G. W., & Wilson, P. W. (1968) Can. J. Microbiol. 14, 25-30.

Thorneley, R. N., & Lowe, D. J. (1983) *Biochem. J. 215*, 393-403.

Thorneley, R. N., & Lowe, D. J. (1984) *Biochem. J. 224*, 887-894.

Thorneley, R. N., Eady, R. R., & Lowe, D. J. (1978) Nature (London) 272, 557-558.

Tso, M.-Y. W., & Burris, R. H. (1973) Biochim. Biophys. Acta 309, 263-270.

Wilson, P. W., & Umbreit, W. W. (1937) Arch. Mikrobiol. 8, 440-457.

Yamazaki, T., Yoshida, N., Wada, E., & Matsuo, S. (1987) Plant Cell Physiol. 28, 263-271.